Jun 14th, 2021 Commencement Today! 11:30 a.m. Read More

Close

Mathematics

We believe that inquiry and the construction of knowledge are essential elements of each student’s educational experience. Park’s mathematics program provides opportunities for students to become more mathematically aware, capable, and confident.

Mathematics enables students to develop a better understanding of our world, to create and discover patterns and ideas, and to appreciate a compelling form of inquiry and argument. Making connections between different areas of mathematics is a major component of our department’s program. We believe the study of mathematics is a unified body of knowledge that emphasizes problem solving and generalization. Applications will engage students and promote their ability to communicate and reason mathematically. To these ends, all Park students take courses that allow them to become better problem-solvers. Students learn algebra, geometry, trigonometry, and other topics through a discovery process and are routinely expected to apply these concepts in novel situations.

REQUIREMENTS

Two years of mathematics are required for graduation. However, most Park students complete mathematics for all four of their years in the Upper School. Students cover the material on the SAT Subject Test in mathematics by the end of 11th grade.

Students are placed in appropriate mathematics classes by the Mathematics Department and are encouraged to visit the Mathematics/Science Office for assistance from faculty members at any time; peer tutors are also available.

A TI-83+ or TI-84+ graphing calculator is required for all classes.

Note: Our goal is for students to take the math courses most appropriate for them. Each level within the core curriculum in grades 9, 10, and 11 will appear as Math 9, Math 10, and Math 11 on student transcripts.

Full Year Mathematics Courses 

Math 9

Grade: 9 

Mathematics courses in the 9th Grade explore algebra, geometry, and the connections between the two.Throughout, there is an emphasis on problem solving, reasoning, and proof. Students are sectioned by interest and ability, with the different classes varying in pace and level of abstraction. 

Math 9-1

This course explores advanced algebraic and geometric content through an emphasis on problem solving, reasoning, and proof. Topics include graph theory, laws of exponents and radicals, the algebra of rational expressions, quadratic equations, Euclidean and coordinate geometry, and unit-circle trigonometry.

Math 9-2, 9-3, 9-4

These courses explore algebra, geometry, and the connections between the two, with an emphasis on developing students’ ability to solve problems through a variety of approaches. Topics include algebra, coordinate geometry, systems of equations, trigonometry, quadratic functions, and combinatorics, with a consistent focus throughout on reasoning and proof.

Math 10

Grade 10 - Required

This course is required at one of three levels: Math 10-1, Math 10-2, or Math 10-3.

Math 10-1

Students expand upon the understanding of algebra and geometry gained in Math 9-1. They explore exponential and logarithmic functions, combinatorics, sequences and series, graphical transformations, polynomials and rational functions, circular motion and the trigonometric functions, trigonometric identities, complex numbers, and begin the study of infinitesimal processes. 

Math 10-2, math 10-3, and math 10-4

These courses examine algebra, geometry, and discrete mathematics but in greater depth than the previous year, with a continuing emphasis on developing students’ ability to solve problems through a variety of approaches. Topics may include graph theory, geometric sequences and series, radicals and laws of exponents, the algebra of rational expressions, exponential functions, further study of quadratic equations, polynomial functions and complex numbers, statistics, and Euclidean geometry.

Math 11-2+, Math 11-2, and Math 11-3

Grade 11

These courses emphasize applications of mathematics and may include the following areas: algorithms, exponential functions, logarithms, trigonometric functions, transformations of functions, polynomial functions, trigonometric identities, combinatorics and probability, and further topics in geometry.

Calculus (Accelerated)

Grades 11-12

Concepts and applications of differential and integral calculus are presented. For juniors, a month-long final project, requiring considerable independent work, concludes the course. Students who complete the course successfully are prepared to take the Advanced Placement Calculus AB exam.

Prerequisite: Math 10-1 or permission of current math teacher.

Advanced Calculus (Accelerated)

Grade 12

In Calculus, students are introduced to the concept of limits, and learn how they can be applied to develop the theory of differentiation (rates of change) and integration (accumulation), which culminates with the fundamental theorems of calculus. Advanced Calculus further develops the techniques of differentiation and integration, and serves as a foundation for classes like differential equations, multivariable calculus, and linear algebra. The curriculum is designed to include the following: indeterminate forms; logarithmic and implicit differentiation; related rates; integration by parts; partial fraction decomposition; improper integrals; parametric and polar equations; vector calculus as it applies to position, velocity, and acceleration; differential equations and population models; sequences; Taylor and power series. These topics cover all of the material found on the Advanced Placement (AP) Calculus BC exam, and will provide a strong foundation for students interested in taking the test. In addition to the core topics previously mentioned, the class may take occasional tangents into other areas of higher mathematical study. These topics may include different number systems; the “sizes” of infinity; mathematical physics and relativity; multivariable calculus and geometry; and Fourier series.

Prerequisite: Calculus

Advanced Elective: linear algebra (accelerated)

Grades 9-12

Linear Algebra is a wonderful element of mathematics: it lives squarely in that sweet spot where beauty and “extreme usefulness” overlap. The subject begins with a deep exploration of strategies for solving systems of linear equations, moving to the powerful realm of vectors, vector spaces, and linear transformations. Applied linear algebra empowers much of modern computational sciences such as Google’s famed PageRank algorithm, computer graphics and animations, and Computerized Axial Tomography (as in CAT scans). This class will provide a balance of theory and application and computation.

Prerequisite: Permission of the department

Fall Semester Mathematics Courses

Calculus I

Grade 12

Students will begin the course by considering the “tangent line problem” and go on to study limits and develop a definition of the derivative. At the same time, they will examine rational functions, using the language and techniques of limits to help understand the graphs of these functions. Before applying the derivative to real-life problems, students will learn a variety of techniques for taking derivatives, all the while strengthening their algebra skills.

Prerequisite: Math 11-2 or permission of the department. Students who took Calculus and Modeling last year are not eligible to take this course.

Calculus 2 (accelerated)

Grade 12

This course explores both the theory and application of differential calculus in considerable depth, and is designed to deepen and expand understanding of the topics learned in Calculus and Modeling last year. This includes an extensive exploration of limits, curve sketching, logarithmic differentiation, and L’Hospital’s Rule, as well as numerous real-world applications involving related rates and optimization. It ends with an introduction to anti-differentiation and integration.

Prerequisite: Calculus and Modeling 

Discrete Mathematics I

Grades 10-12

Discrete Mathematics is a contemporary branch of mathematics that focuses on various problems, topics, and algorithms that often have whole-number outcomes. The topics are grounded in real applications. This course focuses on the mathematical perspective of fairness, value, and individual perception. Students study a wide variety of voting methods and examine “fair division” algorithms through the lens of entitlement to estates, apportionment for governing bodies, and an array of continuous cases.

Statistics I

Grades 10-12

Students study topics in descriptive statistics: displaying data, describing data sets according to center, shape, and spread, the normal distribution, correlation, experimental design, and sampling bias.

Spring Semester Courses

Calculus 2

Grade 12

Students will continue to use the lens of calculus to study functions and their graphs. Topics may include implicit differentiation, optimization problems, related rate problems, the area under a curve, the definition of an integral, and the Fundamental Theorem of Calculus.

Prerequisite: Calculus 1

Calculus 3 (accelerated)

Grade 12

This course investigates the theory and application of integral calculus — antidifferentiation, definite integrals, the Fundamental Theorem of (the) Calculus, and the integral as an accumulator, as well as a range of applications such as the area under a curve, particle motion, and differential equations in numerous everyday contexts. The course will end with a wide-ranging exploration of infinite series and improper integrals.

Prerequisite: Calculus 2 (Accelerated)

Discrete Mathematics 2 (accelerated)

Grades 10-12

Discrete Mathematics 2 will focus primarily on applications that can be analyzed with the help of matrices. After a quick study of what matrices are, and how they work, we will use them as tools to study a variety of applications. Students will model and predict population growths, take an introductory study into cryptography, and study expected probabilities through chance-based board game construction.

Note: Discrete Mathematics 1 is not a prerequisite.

Statistics 2

Grades 10-12

Topics may include sampling techniques, simulations, confidence intervals, hypothesis testing, probability, and expected value.

Prerequisite: Statistics 1